Energy conserving local discontinuous Galerkin methods for wave propagation problems
نویسندگان
چکیده
Abstract Wave propagation problems arise in a wide range of applications. The energy conserving property is one of the guiding principles for numerical algorithms, in order to minimize the phase or shape errors after long time integration. In this paper, we develop and analyze a local discontinuous Galerkin (LDG) method for solving the wave equation. We prove optimal error estimates, superconvergence toward a particular projection of the exact solution, and the energy conserving property for the semi-discrete formulation. The analysis is extended to the fully discrete LDG scheme, with the centered second-order time discretization (the leap-frog scheme). Our numerical experiments demonstrate optimal rates of convergence and superconvergence. We also show that the shape of the solution, after long time integration, is well preserved due to the energy conserving property.
منابع مشابه
Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media
Solving wave propagation problems within heterogeneous media has been of great interest and has a wide range of applications in physics and engineering. The design of numerical methods for such general wave propagation problems is challenging because the energy conserving property has to be incorporated in the numerical algorithms in order to minimize the phase or shape errors after long time i...
متن کاملDiscontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials on unstructured meshes
In this follow-up work, we extend the discontinuous Galerkin (DG) methods previously developed on rectangular meshes [18] to triangular meshes. The DG schemes in [18] are both optimally convergent and energy conserving. However, as we shall see in the numerical results section, the DG schemes on triangular meshes only have suboptimal convergence rate. We prove the energy conservation and an err...
متن کاملFinite Difference and Discontinuous Galerkin Methods for Wave Equations
Wang, S. 2017. Finite Difference and Discontinuous Galerkin Methods for Wave Equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9927-3. Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and...
متن کاملA Class of Discontinuous Petrov-Galerkin Methods. Part IV: Wave Propagation
The phase error, or the pollution effect in the finite element solution of wave propagation problems, is a well known phenomenon that must be confronted when solving problems in the high-frequency range. This paper presents a new method with no phase errors for onedimensional time-harmonic wave propagation problems. The method is constructed within the framework of the Discontinuous Petrov-Gale...
متن کاملSymplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems
The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exact...
متن کامل